Evolutionary history and stress regulation of plant receptor-like kinase/pelle genes.
نویسندگان
چکیده
Receptor-Like Kinase (RLK)/Pelle genes play roles ranging from growth regulation to defense response, and the dramatic expansion of this family has been postulated to be crucial for plant-specific adaptations. Despite this, little is known about the history of or the factors that contributed to the dramatic expansion of this gene family. In this study, we show that expansion coincided with the establishment of land plants and that RLK/Pelle subfamilies were established early in land plant evolution. The RLK/Pelle family expanded at a significantly higher rate than other kinases, due in large part to expansion of a few subfamilies by tandem duplication. Interestingly, these subfamilies tend to have members with known roles in defense response, suggesting that their rapid expansion was likely a consequence of adaptation to fast-evolving pathogens. Arabidopsis (Arabidopsis thaliana) expression data support the importance of RLK/Pelles in biotic stress response. We found that hundreds of RLK/Pelles are up-regulated by biotic stress. Furthermore, stress responsiveness is correlated with the degree of tandem duplication in RLK/Pelle subfamilies. Our findings suggest a link between stress response and tandem duplication and provide an explanation for why a large proportion of the RLK/Pelle gene family is found in tandem repeats. In addition, our findings provide a useful framework for potentially predicting RLK/Pelle stress functions based on knowledge of expansion pattern and duplication mechanism. Finally, we propose that the detection of highly variable molecular patterns associated with specific pathogens/parasites is the main reason for the up-regulation of hundreds of RLK/Pelles under biotic stress.
منابع مشابه
Genome Analysis Evolutionary History and Stress Regulation of Plant Receptor-Like Kinase/Pelle Genes
Receptor-Like Kinase (RLK)/Pelle genes play roles ranging from growth regulation to defense response, and the dramatic expansion of this family has been postulated to be crucial for plant-specific adaptations. Despite this, little is known about the history of or the factors that contributed to the dramatic expansion of this gene family. In this study, we show that expansion coincided with the ...
متن کاملPrimary root growth, tissue expression and co-expression analysis of a receptor kinase mutant in Arabidopsis
There is no functional annotation for the majority of the several hundreds of receptor-like kinases in plants. A direct way of inferring the function of these proteins is to study the phenotype that results from loss of function mutants such as T-DNA mutant lines. In this research a function (phenotype) to At2g37050 gene that encodes a receptor like kinase in Arabidopsis T-DNA line was...
متن کاملRegulation of plant symbiosis receptor kinase through serine and threonine phosphorylation.
We studied the biochemical properties of a plant receptor-like kinase to gain insights into the regulatory mechanism of this largest class of plant kinases. SYMRK (symbiosis receptor kinase) is required for early signal transduction leading to plant root symbioses with nitrogen-fixing rhizobia and phosphate-acquiring arbuscular mycorrhizal fungi. Amino acid substitutions in positions critical f...
متن کاملReceptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases.
Plant receptor-like kinases (RLKs) are proteins with a predicted signal sequence, single transmembrane region, and cytoplasmic kinase domain. Receptor-like kinases belong to a large gene family with at least 610 members that represent nearly 2.5% of Arabidopsis protein coding genes. We have categorized members of this family into subfamilies based on both the identity of the extracellular domai...
متن کاملArabidopsis leaf plasma membrane proteome using a gel free method: Focus on receptor–like kinases
The hydrophobic proteins of plant plasma membrane still remain largely unknown. For example in the Arabidopsis genome, receptor-like kinases (RLKs) are plasma membrane proteins, functioning as the primary receptors in the signaling of stress conditions, hormones and the presence of pathogens form a diverse family of over 610 genes. A limited number of these proteins have appeard in pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 150 1 شماره
صفحات -
تاریخ انتشار 2009